Vapor Pressures of SO_{2} and NH_{3} over $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{3}-\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ Solutions Containing $\left(\mathrm{NH}_{4}\right)_{2} \mathbf{H P O}_{4}$ and $\left(\mathrm{NH}_{4}\right)_{2} \mathbf{S O}_{4}$

Joe Gautney, * Yong K. KIm, John D. Hatfield, and Marlene M. Hinton
Division of Chemical Development, National Fertilizer Development Center, Tennessee Valley Authority, Muscle Shoals, Alabama 35660

> Statistically designed experiments were used to study the vapor pressures of both $\mathbf{S O}_{2}$ and $\mathbf{N H}_{3}$ over ammonium sulifte-bisulfite solutions containing diammonium phosphate and ammonium sulfate. Vapor pressures were measured by using ultraviolet (UV) spectrophotometry. The following predictive equations were developed from the data using nonlinear regression: $P_{\mathrm{sO}_{2}}(\mathrm{mmHg})=$ $\left.10^{(5.73-(2333.31 / T)}\right)\left\{2 \mathrm{~S}-\mathrm{C}+1.42\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right]+\right.$
> $\left.1.09\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}\right]\right\}^{2} /\left\{\mathrm{C}-\mathrm{S}-1.42\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right]-\right.$
> $\left.1.09\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}\right]\right], P_{\mathrm{NH}_{3}}(\mathrm{mmHg})=10^{(13.02-(4794.77 / T)} \mathrm{C}\{\mathrm{C}-$ S-1.23[($\left.\left.\left.\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right]-2.27\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}\right]\right\} /\{2 S-C+$ $\left.1.23\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right]+2.27\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}\right]\right\}$, where C, S, [$\left.\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right]$, and $\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}\right]$ are in $\mathrm{mol} /(100 \mathrm{~mol}$ of water); C and S are the total NH_{3} and sulfite-sultur concentrations, respectively. These equations should be useful for calculating partlal pressures of $\mathbf{S O}_{\mathbf{2}}$ and $\mathbf{N H}_{3}$ over ammonlum sulfite-bisulifite solutions containing $\left(\mathrm{NH}_{4}\right)_{2} \mathbf{S O}_{4}$ and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$.

Introduction

The vapor pressures of SO_{2} and NH_{3} over ammonium sul-fite-bisulfite solutions containing diammonium phosphate and ammonium sulfate were measured. Sulfur dioxide and NH_{3} vapor pressures, $P_{\mathrm{SO}_{2}}$ and $P_{\mathrm{NH}_{3}}$, over pure ammonium sulfitebisulfite solutions have been measured by Johnstone (1) and Berdyanskaya et al. (2). Both gave equations for predicting the partial pressures of SO_{2} and NH_{3} as functions of $\mathrm{C}, \mathrm{S}: \mathrm{C}$, and T, where C and S are the total ammonia and sulfite-sulfur concentrations of the solution in $\mathrm{mol} /(100 \mathrm{~mol}$ of water) and T is the absolute temperature. In later publications Chertkov and Dobromyslova (3) and Trutneva and Chertkov (4) presented data showing the effect that ammonium sulfate alone and both ammonium sulfate and ammonium dihydrogen phosphate have on SO_{2} vapor pressure in the ammonium sulfite-bisulfite system, but they did not study the vapor pressure of NH_{3}.

Moldabekov et al. (5) determined the partial pressure of SO_{2} over ammonium bisulfite solutions containing a mixture of monoand diammonium phosphates. They did not measure the partial pressure of NH_{3} because it was very low. Solubilities in the systems $\mathrm{NH}_{3}-\mathrm{SO}_{2}-\mathrm{P}_{2} \mathrm{O}_{5}-\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{NH}_{3}-\mathrm{SO}_{2}-\mathrm{SO}_{3}-\mathrm{P}_{2} \mathrm{O}_{5}-\mathrm{H}_{2} \mathrm{O}$ (6) also have been studied.

Experimental Section

In the work presented here, a 2^{4} factorial design was used to determine the effects of CA, $S: C A,\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}\right]$, and $[(\mathrm{N}-$ $\left.\mathrm{H}_{4}\right)_{2} \mathrm{SO}_{4}$] on the vapor pressures of SO_{2} and NH_{3} over ammonium sulfite-bisulfite solutions. CA is the ammonia concentration in $\mathrm{mol} /(100 \mathrm{~mol}$ of water) and does not include the ammonia from $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ or $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$, that is, $\mathrm{CA}=\mathrm{C}-2$ $\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}\right]-2\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right]$. The experimental design is shown in Table I. The effect of temperature was determined by running most of the experiments in Table I at three different temperatures ($37.5,47.5$, and $57.5^{\circ} \mathrm{C}$).

Sample solutions were prepared by using freshly boiled deaerated water, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{5},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{3},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$, and $(\mathrm{N}-$ $\left.\mathrm{H}_{4}\right)_{2} \mathrm{SO}_{4}$. The $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{3}$ and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ were prepared in the

Table I. Experimental Design

factor	$\mathrm{CA}^{a, b}$	$S: \mathrm{CA}^{\text {c }}$	$\begin{aligned} & {\left[\left(\mathrm{NH}_{4}\right)_{2}-\right.} \\ & \left.\mathrm{HPO}_{4}\right]^{a} \end{aligned}$	$\begin{aligned} & {\left[\left(\mathrm{NH}_{4}\right)_{2}-\right.} \\ & \left.\mathrm{SO}_{4}\right]^{2} \end{aligned}$
(-) level	7.93	0.60	0.1883	0.4090
(0) level	10.900	0.70	0.3765	0.5453
(+) level	13.87	0.80	0.5648	0.6817
Experiments				
test no.	CA	$S: \mathrm{C}$	$\begin{gathered} {\left[\left(\mathrm{NH}_{4}\right)_{2}-\right.} \\ \left.\mathrm{HPO}_{4}\right]^{-} \end{gathered}$	$\begin{gathered} {\left[\left(\mathrm{NH}_{4}\right)_{2}-\right.} \\ \left.\mathrm{SO}_{4}\right] \end{gathered}$
1	-	--	-	-
2	+	-	-	-
3	-	$+$	-	-
4	+	$+$	-	-
5	-	-	+	-
6	+	-	+	-
7	-	$+$	$+$	-
8	+	+	+	-
9	-	-	-	+
10	+	-	-	+
11	-	+	-	$+$
12	+	+	-	+
13	-	-	+	+
14	+	-	$+$	$+$
15	-	+	+	+
16	+	$+$	+	+
17	${ }^{0}$	0	0	0
18	-2^{d}	0	0	0

${ }^{a}$ Units: $\mathrm{mol} /(100 \mathrm{~mol}$ of water $) .{ }^{b} \mathrm{CA}=\mathrm{C}-2\left[\left(\mathrm{NH}_{4}\right)_{2}\right.$ -$\left.\mathrm{HPO}_{4}\right]-2\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right]$. ${ }^{c} S=$ concentration of sulfite S in mol/ (100 mol of water). ${ }^{d}-2$ level of $\mathrm{CA}=4.95$.
laboratory; the $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ were reagent grade. Each sample solution was analyzed for S_{T} (total sulfur), $\mathrm{SO}_{2}-\mathrm{S}$, $\mathrm{P}_{2} \mathrm{O}_{5}$, and N_{T} (total nitrogen). Partial pressures of SO_{2} and NH_{3} were measured by using a dynamic method similar to that used by Johnstone (1). The method is described below.

A stream of oxygen-free nitrogen, flowing at approximately $20 \mathrm{~cm}^{3} / \mathrm{min}$, was passed through four gas scrubbing bottles connected in series and filled with the sample solution. The entire sample train was immersed in a constant-temperature bath. As the nitrogen passed through the sample train, it became saturated with $\mathrm{SO}_{2}, \mathrm{NH}_{3}$, and water vapor and was equilibrated with the sample solution by the time it reached the fourth bottle. After leaving the fourth bottle, the equillbrated gas was passed through water-jacketed glass tubing to the UV cell of a Cary 17 spectrophotometer, where it was analyzed for SO_{2} and NH_{3}. In order to ensure that no condensation occurred after the gas left the fourth bottle, we maintained both the water-jacketed glass tubing and the cell compartment of the Cary 17 at $70^{\circ} \mathrm{C}$. Pressure inside the UV cell was measured with a red oil manometer. After the last vapor pressure measurement, the sample solution in the fourth bottle was analyzed for $\mathrm{S}_{\mathrm{T}}, \mathrm{SO}_{2}-\mathrm{S}, \mathrm{P}_{2} \mathrm{O}_{5}$, and N_{T} to ensure that it had not been depleted during the experiment. Accuracy of the vapor pressure apparatus was verified by checking the vapor pressure of water at the three specified temperatures.

The concentrations of SO_{2} and NH_{3} were determined from the UV absorbance of the gas at nine different wavelengths between 210 and $190 \mathrm{~nm} ; \mathrm{SO}_{2}$ peaks occurred at four of these wavelengths, NH_{3} peaks occurred at four, and both an SO_{2} and

Table II. Vapor Pressure Data

	soln composition				$T,{ }^{\circ} \mathrm{C}$	vapor pressure, mmHg				soln pH
expt no.	$C A^{a, b}$	$s: C A$	$\begin{aligned} & {\left[\left(\mathrm{NH}_{4}\right)_{2}-\right.} \\ & \left.\mathrm{HPO}_{4}\right]^{a} \end{aligned}$	$\begin{aligned} & {\left[\left(\mathrm{NH}_{4}\right)_{2}-\right.} \\ & \left.\mathrm{SO}_{4}\right]^{a} \end{aligned}$		$\mathrm{P}_{\mathrm{SO}_{2}}$	${\stackrel{P}{\mathrm{SOO}_{2}}}_{(\mathrm{calc})^{-}}$	$P_{\mathrm{NH}_{3}}$	$\begin{aligned} & P_{\mathrm{NH}_{3}}{ }^{(\mathrm{calcd})^{d}} \\ & \hline \end{aligned}$	
1 a	8.0450	0.6052	0.1910	0.4519	57.5	0.0175	0.0206	1.029	0.7758	6.92
1 b	8.0450	0.6052	0.1910	0.4519	57.5	0.0256	0.0206	1.032	0.7758	6.92
2 a	13.1940	0.6234	0.1883	0.5719	37.5	0.0000	0.0229	0.0942	0.1071	6.65
2 b	13.1940	0.6234	0.1883	0.5719	37.5	0.0141	0.0229	0.1192	0.1071	6.65
2 c	13.1940	0.6234	0.1883	0.5719	47.5	0.0067	0.0393	0.3316	0.3243	6.60
2d	13.1940	0.6234	0.1883	0.5719	47.5	0.0451	0.0393	0.3658	0.3243	6.60
2 e	13.1940	0.6234	0.1883	0.5719	57.5	0.0673	0.0652	1.031	0.9188	6.60
2 f	13.1940	0.6234	0.1883	0.5719	57.5	0.0531	0.0652	0.9909	0.9188	6.60
3 a	7.1064	0.8364	0.1913	0.6628	37.5	0.1472	0.1713	0.0261	0.0129	6.00
3 b	7.1064	0.8364	0.1913	0.6628	37.5	0.1277	0.1713	0.0160	0.0129	6.00
3 c	7.1064	0.8364	0.1913	0.6628	47.5	0.2446	0.2937	0.0444	0.0390	6.35
3 d	7.1064	0.8364	0.1913	0.6628	47.5	0.2274	0.2937	0.0651	0.0390	6.35
3 e	7.1064	0.8364	0.1913	0.6628	57.5	0.3865	0.4875	0.1459	0.1105	6.25
3 f	7.1064	0.8364	0.1913	0.6628	57.5	0.3701	0.4875	0.0409	0.1105	6.25
4 a	13.9858	0.7972	0.1956	0.4661	37.5	0.2736	0.3110	0.0259	0.0234	5.75
4 b	13.9858	0.7972	0.1956	0.4661	37.5	0.2948	0.3110	0.0270	0.0234	5.75
4 c	13.9858	0.7972	0.1956	0.4661	47.5	0.4293	0.5334	0.0327	0.0708	5.80
4d	13.9858	0.7972	0.1956	0.4661	47.5	0.4952	0.5334	0.0499	0.0708	5.80
4 e	13.9858	0.7972	0.1956	0.4661	57.5	0.9903	0.8854	0.2259	0.2006	5.75
4 f	13.9858	0.7972	0.1956	0.4661	57.5	0.8410	0.8854	0.1693	0.2006	5.75
5 a	8.2027	0.5749	0.5056	0.3789	37.5	0.0000	0.0012	0.1379	0.1320	6.88
5 b	8.2027	0.5749	0.5056	0.3789	37.5	0.0000	0.0012	0.1374	0.1320	6.88
5 c	8.2027	0.5749	0.5056	0.3789	47.5	0.0000	0.0020	0.4047	0.4000	6.75
5d	8.2027	0.5749	0.5056	0.3789	47.5	0.0147	0.0020	0.4118	0.4000	6.75
5 c	8.2027	0.5749	0.5056	0.3789	57.5	0.0139	0.0034	1.132	1.133	6.85
5 f	8.2027	0.5749	0.5056	0.3789	57.5	0.0161	0.0034	1.191	1.133	6.85
6 a	14.1200	0.5863	0.5684	0.4353	37.5	0.0042	0.0069	0.1590	0.1678	6.77
6 b	14.1200	0.5863	0.5684	0.4353	37.5	0.0011	0.0069	0.1599	0.1678	6.77
6 c	14.1200	0.5863	0.5684	0.4353	47.5	0.0019	0.0119	0.4822	0.5084	6.65
6 d	14.1200	0.5863	0.5684	0.4353	47.5	0.0078	0.0119	0.4863	0.5084	6.65
6 c	14.1200	0.5863	0.5684	0.4353	57.5	0.0211	0.0197	1.346	1.440	6.84
67°	14.1200	0.5863	0.5684	0.4353	57.5	0.0325	0.0197	1.354	1.440	6.84
7 a	7.7775	0.8239	0.5699	0.4245	37.5	0.1147	0.1412	0.0114	0.0121	6.10
7 b	7.7775	0.8239	0.5699	0.4245	37.5	0.1164	0.1412	0.0125	0.0121	6.10
7 c	7.7775	0.8239	0.5699	0.4245	47.5	0.1887	0.2421	0.0220	0.0366	6.40
7 d	7.7775	0.8239	0.5699	0.4245	47.5	0.1930	0.2421	0.0324	0.0366	6.40
7 e	7.7775	0.8239	0.5699	0.4245	57.5	0.3469	0.4018	0.1480	0.1036	6.30
7 f	7.7775	0.8239	0.5699	0.4245	57.5	0.3331	0.4018	0.1567	0.1036	6.30
8 a	14.1218	0.8044	0.5803	0.4889	37.5	0.2773	0.2800	0.0277	0.0225	5.70
8 b	14.1218	0.8044	0.5803	0.4889	37.5	0.2880	0.2800	0.0415	0.0225	5.70
8 c	14.1218	0.8044	0.5803	0.4889	47.5	0.4742	0.4801	0.0840	0.0683	5.75
8 d	14.1218	0.8044	0.5803	0.4889	47.5	0.4790	0.4801	0.0959	0.0683	5.75
8 e	14.1218	0.8044	0.5803	0.4889	57.5	0.7463	0.7969	0.1719	0.1935	5.80
8 f	14.1218	0.8044	0.5803	0.4889	57.5	0.8053	0.7969	0.2193	0.1935	5.80
9 a	7.8243	0.5971	0.1885	0.6685	37.5	0.0011	0.0041	0.1106	0.1274	6.81
9 b	7.8243	0.5971	0.1885	0.6685	47.5	0.0007	0.0071	0.3499	0.3860	6.59
9 c	7.8243	0.5971	0.1885	0.6685	57.5	0.0130	0.0117	1.010	1.093	6.55
9d	7.8243	0.5971	0.1885	0.6685	57.5	0.0099	0.0117	0.9918	1.093	6.55
10a	12.8959	0.6070	0.1814	0.4752	37.5	0.0000	0.0161	0.1040	0.1219	6.75
10 b	12.8959	0.6070	0.1814	0.4752	37.5	0.0000	0.0161	0.1067	0.1219	6.75
10c	12.8959	0.6070	0.1814	0.4752	47.5	0.0019	0.0277	0.3450	0.3693	6.80
10d	12.8959	0.6070	0.1814	0.4752	47.5	0.0063	0.0277	0.3676	0.3693	6.80
10 e	12.8959	0.6070	0.1814	0.4752	57.5	0.0267	0.0459	0.9671	1.046	6.75
10 f	12.8959	0.6070	0.1814	0.4752	57.5	0.0328	0.0459	0.9390	1.046	6.75
11a	7.8874	0.8086	0.1899	0.7125	37.5	0.1506	0.1446	0.0138	0.0173	6.04
11 b	7.8874	0.8086	0.1899	0.7125	37.5	0.1530	0.1446	0.0138	0.0173	6.04
11c	7.8874	0.8086	0.1899	0.7125	47.5	0.2523	0.2480	0.0229	0.0525	5.74
11d	7.8874	0.8086	0.1899	0.7125	57.5	0.3726	0.4117	0.0323	0.1488	5.82
12a	13.0760	0.8215	0.1881	1.0608	37.5	0.3405	0.3077	0.0382	0.0246	5.85
12 b	13.0760	0.8215	0.1881	1.0608	37.5	0.3417	0.3077	0.0195	0.0246	5.85
12 c	13.0760	0.8215	0.1881	1.0608	47.5	0.5828	0.5278	0.0773	0.0745	5.85
12 d	13.0760	0.8215	0.1881	1.0608	47.5	0.5566	0.5278	0.0734	0.0745	5.85
12 e	13.0760	0.8215	0.1881	1.0608	57.5	0.8425	0.8760	0.2052	0.2111	5.88
12 f	13.0760	0.8215	0.1881	1.0608	57.5	0.9785	0.8760	0.2052	0.2111	5.88
13a	8.0198	0.5896	0.5682	0.6498	37.5	0.0097	0.0012	0.1395	0.1363	-6.65
13 b	8.0198	0.5896	0.5682	0.6498	37.5	0.0015	0.0012	0.1291	0.1363	6.65
13 c	8.0198	0.5896	0.5682	0.6498	47.5	0.0024	0.0020	0.4021	0.4130	6.68
13 d	8.0198	0.5896	0.5682	0.6498	47.5	0.0026	0.0020	0.3812	0.4130	6.68
13 e	8.0198	0.5896	0.5682	0.6498	57.5	0.0330	0.0033	1.106	1.170	6.70
13 i	8.0198	0.5896	0.5682	0.6498	57.5	0.0319	0.0033	1.257	1.170	6.70
14 a	14.0525	0.6052	0.5679	0.7811	37.5	0.0112	0.0100	0.1706	0.1561	6.90
14 b	14.0525	0.6052	0.5679	0.7811	37.5	0.0059	0.0100	0.1683	0.1561	6.90
14 c	14.0525	0.6052	0.5679	0.7811	47.5	0.0598	0.0172	0.5485	0.4727	6.95
14 d	14.0525	0.6052	0.5679	0.7811	47.5	0.0314	0.0172	0.5052	0.4727	6.95
14 e	14.0525	0.6052	0.5679	0.7811	57.5	0.0633	0.0285	1.458	1.339	6.82

Table II (Continued)

expt no.	soln composition				$T,{ }^{\circ} \mathrm{C}$	vapor pressure, mmHg				soln pH
	$\mathrm{CA}^{\text {a,b }}$	S:CA	$\begin{aligned} & {\left[\left(\mathrm{NH}_{4}\right)_{2}-\right.} \\ & \left.\mathrm{HPO}_{4}\right]^{a} \end{aligned}$	$\begin{gathered} {\left[\left(\mathrm{NH}_{4}\right)_{2}-\right.} \\ \left.\mathrm{SO}_{4}\right]^{a} \end{gathered}$		$\mathrm{P}_{\mathrm{SO}_{2}}$	${ }_{\left(\mathrm{Palcd}_{2}\right)^{-}}$ $(\text { calcd })^{c}$	$P_{\mathrm{NH}_{3}}$	$\begin{aligned} & P_{\mathrm{NH}_{3}{ }^{-}}^{(\text {calcd })^{d}} \end{aligned}$	
14 f	14.0525	0.6052	0.5679	0.7811	57.5	0.0633	0.0285	1.242	1.339	6.82
14 g	14.0525	0.6052	0.5679	0.7811	57.5	0.0494	0.0285	1.325	1.339	6.82
15a	7.7289	0.8144	0.5664	0.7234	37.5	0.1516	0.1073	0.0126	0.0166	5.72
15b	7.7289	0.8144	0.5664	0.7234	47.5	0.2231	0.1841	0.0145	0.0503	5.81
15c	7.7289	0.8144	0.5664	0.7234	47.5	0.2565	0.1841	0.0360	0.0503	5.81
15d	7.7289	0.8144	0.5664	0.7234	57.5	0.3825	0.3056	0.0775	0.1424	5.85
15 e	7.7289	0.8144	0.5664	0.7234	57.5	0.3825	0.3056	0.0955	0.1424	5.85
16a	13.7930	0.8132	0.5692	0.6497	37.5	0.3206	0.2853	0.0309	0.0223	5.80
16b	13.7930	0.8132	0.5692	0.6497	37.5	0.3283	0.2853	0.0197	0.0223	5.80
16 c	13.7930	0.8132	0.5692	0.6497	47.5	0.5268	0.4893	0.0554	0.0675	5.80
16 d	13.7930	0.8132	0.5692	0.6497	47.5	0.5472	0.4893	0.0782	0.0675	5.80
16 e	13.7930	0.8132	0.5692	0.6497	57.5	0.8599	0.8121	0.1696	0.1913	5.80
16 f	13.7930	0.8132	0.5692	0.6497	57.5	0.8476	0.8121	0.1477	0.1913	5.80
17a	10.2754	0.7215	0.3782	0.7304	37.5	0.0671	0.0652	0.0405	0.0395	5.90
17 b	10.2754	0.7215	0.3782	0.7304	37.5	0.0619	0.0652	0.0392	0.0395	5.90
17 c	10.2754	0.7215	0.3782	0.7304	47.5	0.1052	0.1118	0.1119	0.1197	5.80
17 d	10.2754	0.7215	0.3782	0.7304	47.5	0.0980	0.1118	0.1119	0.1197	5.80
17e	10.2754	0.7215	0.3782	0.7304	57.5	0.1656	0.1855	0.3335	0.3391	5.80
17 f	10.2754	0.7215	0.3782	0.7304	57.5	0.1727	0.1855	0.3324	0.3391	5.80
18a	4.6995	0.7420	0.3827	0.7500	37.5	0.0158	0.0184	0.0345	0.0255	6.14
18 b	4.6995	0.7420	0.3827	0.7500	37.5	0.0228	0.0184	0.0385	0.0255	6.14
18 c	4.6995	0.7420	0.3827	0.7500	47.5	0.0229	0.0316	0.1068	0.0772	6.18
18d	4.6995	0.7420	0.3827	0.7500	47.5	0.0225	0.0316	0.0932	0.0772	6.18
18 e	4.6995	0.7420	0.3827	0.7500	57.5	0.0257	0.0524	0.2842	0.2186	6.27
18 f	4.6995	0.7420	0.3827	0.7500	57.5	0.0380	0.0524	0.3216	0.2186	6.27

NH_{3} peak occurred at one. The absorbances of SO_{2} and NH_{3} obey Beer's law, and they are related to concentrations by the following equations:

$$
\begin{align*}
& A(i)_{\mathrm{SO}_{2}}=\epsilon(i)_{\mathrm{SO}_{2}} b P_{\mathrm{SO}_{2}} \tag{1}\\
& A(i)_{\mathrm{NH}_{3}}=\epsilon(i)_{\mathrm{NH}_{3}} b P_{\mathrm{NH}_{3}} \tag{2}
\end{align*}
$$

where $A(i)_{\mathrm{SO}_{2}}$ and $A(i)_{\mathrm{NH}_{3}}$ are the component absorbances at wavelength $i ; \epsilon(I)_{\mathrm{SO}_{2}}$ and $\epsilon(i)_{\mathrm{NH}_{3}}$ are the absorptivities at the same wavelength; b is the cell path length; and $P_{\mathrm{SO}_{2}}$ and $P_{\mathrm{NH}_{3}}$ are the concentrations of SO_{2} and NH_{3}, respectively. The total absorbance of the gas mixture is the algebraic sum of the absorbances of the components, that is

$$
\begin{equation*}
A(i)_{T}=\epsilon(i)_{\mathrm{SO}_{2}} b P_{\mathrm{SO}_{2}}+\epsilon(i)_{\mathrm{NH}_{3}} b P_{\mathrm{NH}_{3}} \tag{3}
\end{equation*}
$$

The values of $\epsilon_{\mathrm{SO}_{2}}$ and $\epsilon_{\mathrm{NH}_{3}}$ were determined by using SO_{2} and NH_{3} calibration gas. The total absorbance of the equilibrated vapor from the test solution was measured by repeatedly scanning from 210 to 190 nm until the spectra were duplicated within the error of the instrument. The concentrations of SO_{2} and NH_{3} were determined by iteration using the five SO_{2} peaks for SO_{2} and the five NH_{3} peaks for NH_{3}. The peaks were weighted according to their height.

Results and Discussion

The experimental data are shown in Table II. Most of the measurements on each solution were made twice at three different temperatures ($37.5,47.5$, and $57.5^{\circ} \mathrm{C}$). Predictive equations for $P_{\mathrm{SO}_{2}}$ and $P_{\mathrm{NH}_{3}}$ were obtained by fitting the data to the following models using nonlinear regression to determine the values of the parameters A, B, m, and n :

$$
\begin{align*}
& P_{\mathrm{sO}_{2}}=10^{\left(A \mathrm{son}_{2}+\left(B_{\mathrm{so2}} / T\right)\right.}\left\{2 \mathrm{~S}-\mathrm{C}+m_{\mathrm{SO}_{2}}\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right]+\right. \\
& \left.n_{\mathrm{SO}_{2}}\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}\right]\right\}^{2} /\left\{C-s-m_{\mathrm{SO}_{2}}\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right]-\right. \\
& \left.n_{\mathrm{SO}_{2}}\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}\right]\right\} \tag{4}\\
& P_{\mathrm{NH}_{3}}=10^{\left(A_{\mathrm{NH}_{3}}+\left(\mathrm{B}_{\mathrm{NH}} / T\right)\right.}(\mathrm{C}) \times \\
& \left\{C-S-m_{\mathrm{NH}_{3}}\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right]-n_{\mathrm{NH}_{3}}\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}\right]\right\} /\{2 S-C+ \\
& \left.m_{\mathrm{NH}_{3}}\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right]+n_{\mathrm{NH}_{3}}\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}\right]\right\} \tag{5}
\end{align*}
$$

Figure 1. Effect of temperature on $P_{\mathrm{SO}_{2}}$ and $P_{\mathrm{NH}_{3}}$.
These equations are simply expansions of Johnstone's (1) model for solutions in which a strong acid is present. The parameters A and B are the intercept and the slope, respectively, for the temperature effect and m and n are empirical constants which correct the vapor pressures for the presence of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4} ; P_{\mathrm{SO}_{2}}$ and $P_{\mathrm{NH}_{3}}$ are in mmHg ; and C, S, $\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right]$, and $\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}\right]$ are in $\mathrm{mol} /(100 \mathrm{~mol}$ of water). Values of the parameters for $P_{\mathrm{SO}_{2}}$ and $P_{\mathrm{NH}_{3}}$ are given in Table III. The values of the A and B parameters for the temperature effect agree closely with those obtained by Johnstone (1). Calculation of the heats of vaporization $\left(\Delta H_{v}\right)$ from the B parameters gives average values of 10677 and 21940

Table III. Values of Parameters for $P_{\mathrm{SO}_{2}}$ and $P_{\mathrm{NH}_{3}}$ Equations

parameter	$P_{\mathrm{SO}_{2}}$	$P_{\mathrm{NH}_{3}}$
A	5.73 ± 0.26	13.02 ± 0.45
B	-2333.31 ± 84.33	-4794.77 ± 148.94
m	1.42 ± 0.07	1.23 ± 0.06
n	1.09 ± 0.10	2.27 ± 0.07
R^{2}, model	0.98	0.98
standard error, mmHg	0.04	0.06

Figure 2. Effect of CA on $P_{\mathrm{SO}_{2}}$ and $P_{\mathrm{NH}_{3}}$.

Flgure 3. Effect of $S: C A$ on $P_{\mathrm{SO}_{2}}$ and $P_{\mathrm{NH}_{3}}$.
$\mathrm{cal} / \mathrm{mol}$ for SO_{2} and NH_{3}, respectively.
The projected effects of $T, \mathrm{CA}, \mathrm{S}: \mathrm{CA},\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}\right]$, and [$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$] are shown in Figures 1-5. As expected, T, CA, and S :CA had a much larger effect over the range studied than [$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$] or [$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$]. Increasing T and CA increases the vapor pressure of both SO_{2} and NH_{3}; increasing $\mathrm{S}: \mathrm{CA}$ increases $P_{\mathrm{SO}_{2}}$ but decreases $P_{\mathrm{NH}_{3}}$. The vapor pressure of SO_{2} decreases with increasing $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ concentration. Increasing the $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ concentration had very little effect on the vapor pressure of NH_{3}. Our data show that addition of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ increases $P_{\mathrm{NH}_{3}}$ and decreases $P_{\mathrm{SO}_{2}}$. This is contrary to Chertkov and Dobromyslova's data (3) which showed that

Figure 4. Effect of $\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}\right]$ on $P_{\mathrm{SO}_{2}}$ and $P_{\mathrm{NH}_{3}}$.

Figure 5. Effect of $\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right]$ on $P_{\mathrm{SO}_{2}}$ and $P_{\mathrm{NH}_{3}}$.
increasing $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ concentration increases $P_{\mathrm{sO}_{2}}$. Chertkov and Dobromyslova did not study the effect of $\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right]$ on $P_{\mathrm{NH}_{3}}$.

We think that our data are an improvement over those obtained previously (1-5) because our experiments were statistically designed and determined the effect of $\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}\right]$ and $\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right]$ on both $\mathrm{P}_{\mathrm{SO}_{2}}$ and $P_{\mathrm{NH}_{3}}$. Our models should be useful for calculating scrubbing parameters for $\mathrm{NH}_{3}-\mathrm{SO}_{2}$ scrubbing systems containing $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$.

Reglstry No. $\mathrm{SO}_{2}, 7446-09-5 ; \mathrm{NH}_{3}, 7664-41-7 ;\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{3}, 10196-04-0 ;$ $\left(\mathrm{NH}_{4}\right) \mathrm{HSO}_{3}, 10192-30-0 ;\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}, 7783-28-0 ;\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}, 7783-20-2$.

Literature Clied

(1) Johnstone, H. F. Ind. Eng. Chem. 1935, 27, 587.
(2) Berdyanskaya, R. A.; Golyand, S. M.; Chertkov, B. A. Zh. Prikl. Khim. (Leningrad) 1959, 32, 1930.
(3) Chertkov, B. A.; Dobromysiova, N. S. Zh. Prikl. Khim. (Leningrad) 1984, 37, 1718.
(4) Trutneva, N. V.; Chertkov, B. A. Tr.—Nauchno-Iss/ed. Inst, Udobr. Insectofungit. im Prof. Ya. V. Samoilova 1970, 111.
(5) Moldabekov, Sh.; Salybaev, A.; Seltmagzi, A. Khim. Tekhnol. Silik . 1974, 307.
(6) Gautney, J.; Frazier, A. W.; Kim, Y. K.; Hattield, J. D. J. Chem. Eng. Data 1980, 25, 154.

[^0]
[^0]: Received for review June 18, 1982. Accepted September 17, 1982.

